Off-axis primary-dose measurements using a mini-phantom.
نویسندگان
چکیده
The characterization of the incident photon beam is usually divided into its dependence on collimator setting (head-scatter factor) and off-axis position (primary off-axis ratio). These parameters are normally measured "in air" with a build-up cap thick enough to generate full dose build-up at the depth of dose maximum. In order to prevent any influence from contaminating electrons, it has been recommended that head-scatter measurements are carried out using a mini-phantom rather than a conventional build-up cap. Due to the volume of the mini-phantom, the effects from attenuation and scatter are not negligible. In relative head-scatter measurements these effects cancel and the head scatter is thus a good representation of the variation of the incident photon beam with collimator setting. However, in off-axis measurements, attenuation and scatter conditions vary due to beam softening and do not cancel in the calculation of the primary off-axis ratio. The purpose of the present work was to estimate the effects from attenuation and phantom scatter in order to determine their influence on primary off-axis ratio measurements. We have characterized the off-axis beam-softening effect by means of narrow-beam transmission measurements to obtain the effective attenuation coefficient as a function of off-axis position. We then used a semi-analytical expression for the phantom-scatter calculation that depends solely on this attenuation coefficient. The derived formalism for relative "in air" measurements using a mini-phantom is clear and consistent, which enables the user to separately calculate the effects from scatter and attenuation. For the investigated beam qualities, 6 and 18 MV, our results indicate that the effects from attenuation and scatter in the mini-phantom nearly cancel (the combined effect is less than 1%) within 12.5 cm from the central beam axis. Thus, no correction is needed when the primary off-axis ratio is measured with a mini-phantom.
منابع مشابه
Experimental evaluation of midline dose calculation methods in In vivo dosimetry using anatomic thorax phantom
Background: In vivo dosimetry is a method for estimation of overall error in the delivered dose to the patients at the end of radiotherapy process. In this research, two methods for target dose calculation were evaluated on midline and central axis of photon beams in in vivo dosimetry of thorax fields. Materials and Methods: Entrance and exit doses for anterior and lateral fields of thorax were...
متن کاملExperimental Evaluation of Depth Dose by Exit Surface Diode Dosimeters for Off-Axis Wedged Fields in Radiation Therapy
Introduction Evaluation of the delivered dose of externally wedged photon beams by external diode dosimeters during the treatment process requires the estimation of exit surface dose correction factors in various wedge angles and field sizes. Materials and Methods A system of absorbed dose evaluation, using p-type diode dosimeters placed on the exit surface of a phantom, was characterized for e...
متن کاملMeasurement and comparison of head scatter factor for 9MV photon beam using the build-up cap and a columnar mini-phantom
Introduction: The Sc is an important parameter to monitor unit (MU) calculation in radiation therapy procedure. The aim of this study is to measurement and comparison of head scatter factor (Sc) for 9MV photon beam using the build-up cap and a columnar mini-phantom. Materials and Methods: The measurements performed using a calibrated ion chamber (Scanditron...
متن کاملEffect of Material and Wall Thickness Buildup Caps on the Head ScatterFactor Measurements in Irregular Fields Shielded by Cerrobend
Introduction: The head scatter factor (Sc) is important to measurements radiation beam and beam modeling of treatment planning systems used for advanced radiation therapy techniques. This study aimed to investigate the design of a mini-phantom to measurement variations in collimator Sc in the presence of shielding blocks for shaping the beam using different field sizes. <str...
متن کاملAssessment of Dose Calculation Accuracy of TiGRT Treatment Planning System for Physical Wedged fields in Radiotherapy
Introduction Wedge modifiers are commonly applied in external beam radiotherapy to change the dose distribution corresponding to the body contour and to obtain a uniform dose distribution within the target volume. Since the radiation dose delivered to the target must be within ±5% of the prescribed dose, accurate dose calculation by a treatment planning system (TPS) is important. The objective ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 24 5 شماره
صفحات -
تاریخ انتشار 1997